8.1 The 8088 and 8086 Microprocessors

- The 8086, announced in 1978, was the first 16-bit microprocessor introduced by Intel Corporation.
- 8086 and 8088 both have the ability to address up to 1 Mbyte of memory and 64K of input/output port.
- The 8088 and 8086 are internally 16-bit MPU. However, externally the 8086 has a 16-bit data bus and the 8088 has an 8-bit data bus.
- 8086 and 8088 both have the ability to address up to 1 Mbyte of memory and 64K of input/output port.
- The 8088 and 8086 are both manufactured using high-performance metal-oxide semiconductor (CMOS) technology.
- The 8088 and 8086 are housed in a 40-pin dual in-line package and many pins have multiple functions.

8.9 Memory Bus Status Codes
8.10 Memory Control Signals
8.11 Read and Write Bus Cycles
8.12 Memory Interface Circuits
8.13 Programmable Logic Arrays
8.14 Types of Input/Output
8.15 An Isolated Input/Output Interface
8.16 Input/Output Data Transfer
8.17 Input/Output Instructions
8.18 Input/Output Bus Cycles

8.1 The 8088 and 8086 Microprocessors

- CMOS, Complementary Metal-Oxide-Semiconductor, is a major class of integrated circuits used in chips such as microprocessors, microcontrollers, static RAM, digital logic circuits, and analog circuits such as image sensors.
- Two important characteristics of CMOS devices are high noise immunity and low static power supply drain. Significant power is only drawn when its transistors are switching between on and off states; consequently, CMOS devices do not produce as much heat as other forms of logic such as TTL.
- CMOS also allows a high density of logic functions on a chip.
8.1 The 8088 and 8086 Microprocessors

Pin layout of the 8086 and 8088 microprocessor

8.2 Minimum-Mode and Maximum-Mode System

The 8086 and 8088 microprocessors can be configured to work in either of two modes:

- The minimum mode: \(\text{MIN} = 1 \)
- The maximum mode: \(\text{MIN} = 0 \)

The mode selection feature lets the 8088 or 8086 better meet the needs of a wide variety of system requirements.

Minimum mode 8088/8086 systems are typically smaller and contain a single processor.

Depending on the mode of operation selected, the assignment for a number of the pins on the microprocessor package are changed.

8.2 Minimum-Mode and Maximum-Mode System

The mode selection feature lets the 8088 or 8086 better meet the needs of a wide variety of system requirements.

Minimum mode 8088/8086 systems are typically smaller and contain a single processor.

Depending on the mode of operation selected, the assignment for a number of the pins on the microprocessor package are changed.

8.2 Minimum-Mode and Maximum-Mode System

Signals common to both minimum and maximum mode

8.2 Minimum-Mode and Maximum-Mode System

Unique minimum-mode signals

8.2 Minimum-Mode and Maximum-Mode System

Unique maximum-mode signals

EXAMPLE

Which pins provide different signal functions in the minimum-mode 8088 and minimum-mode 8086?

Solution:

(a) Pins 2 through 8 on the 8088 are address lines \(A_{14} \) through \(A_8 \), but on the 8086 they are address/data lines \(AD_{14} \) through \(AD_8 \).

(b) Pin 28 on the 8088 is IO/M output and on the 8086 it is the M/IO output.

(c) Pin 34 of the 8088 is the BHE output, and on the 8086 this pin supplies the BHE output.
8.3 Minimum-Mode Interface

- The minimum-mode signals can be divided into the following basic groups:
 - Address/Data bus
 - Status signals
 - Control signals
 - Interrupt signals
 - DMA interface signals

Address/Data bus
- The address bus is used to carry address information to the memory and I/O ports.
- The address bus is 20-bit long and consists of signal lines A0 through A19.
- A 20-bit address gives the 8088 a 1 Mbyte memory address space.
- Only address line A0 through A15 are used when addressing I/O. This gives an I/O address space of 64 Kbytes.

The 8088 has 8 multiplexed address/data bus lines (A0~A7) while 8086 has 16 multiplexed address/data bus lines (A0~A15).

Status signals
- The four most significant address, A19 through A16 are multiplexed with status signal S6 through S3.
- Bits S3 and S2 together form a 2-bit binary code that identifies which of the internal segment registers was used to generate the physical address. S2 is the logic level of the internal interrupt flag. S0 is always at the 0 logic level.

Control signals
- The control signals are provided to support the memory and I/O interfaces of the 8088 and 8086.
 - ALE - Address Latch Enable
 - IO/M - I/O/Memory (8088)
 - M/IO - Memory/IO (8086)
 - DT/R - Data Transmit/Receive (8088/8086)
 - S0 - System Status Output (8088)
 - BHE - Bank High Enable (8086)
 - RD - Read (8088/8086)
 - WR - Write (8088/8086)
 - DEN - Data Enable (8088/8086)
 - READY – Ready (8088/8086)
8.3 Minimum-Mode Interface

- **Interrupt signals**
 - The interrupt signals can be used by an external device to signal that it needs to be serviced.
 - INTR – Interrupt Request
 - INTA – Interrupt Acknowledge
 - TEST – Test (can be used to synchronize MPU)
 - NMI – Nonmaskable Interrupt
 - RESET – Reset (hardware reset of the MPU)

8.4 Maximum-Mode Interface

- **The maximum-mode configuration is mainly used for implementing a multiprocessor/coprocessor system environment.**
- **Global resources and local resources**
- In the maximum-mode, facilities are provided for implementing allocation of global resources and passing bus control to other microprocessors sharing the system bus.

8.4 Maximum-Mode Interface

- **8288 bus controller**
 - In the maximum-mode, 8088/8086 outputs a status code on three signal lines, S0, S1, S2, prior to the initialization of each bus cycle.
 - The 3-bit bus status code identifies which type of bus cycle is to follow and are input to the external bus controller device, 8288.
 - The 8288 produces one or two command signals for each bus cycle.
8.4 Maximum-Mode Interface

- **8288 bus controller**

<table>
<thead>
<tr>
<th>Status Inputs</th>
<th>CPU Cycle</th>
<th>8288 Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2 S1 S0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0</td>
<td>Interrupt Acknowledge</td>
<td>INTR</td>
</tr>
<tr>
<td>0 0 1</td>
<td>Read I/O Port</td>
<td>IOC</td>
</tr>
<tr>
<td>0 1 0</td>
<td>Write I/O Port</td>
<td>IOWC, AIOWC</td>
</tr>
<tr>
<td>0 1 1</td>
<td>Halt</td>
<td>None</td>
</tr>
<tr>
<td>1 0 0</td>
<td>Instruction Fetch</td>
<td>MRDC</td>
</tr>
<tr>
<td>1 0 1</td>
<td>Read Memory</td>
<td>MRWC</td>
</tr>
<tr>
<td>1 1 0</td>
<td>Write Memory</td>
<td>MWTC, AMWC</td>
</tr>
<tr>
<td>1 1 1</td>
<td>Passive</td>
<td>None</td>
</tr>
</tbody>
</table>

Bus status code

8.4 Maximum-Mode Interface

- **Lock signal**
 - The lock signal (LOCK) is meant to be output (logic 0) whenever the processor wants to lock out the other processor from using the bus.

- **Local bus control signals**
 - The request/grant signals (RQ/GT0, RQ/GT1) provide a prioritized bus access mechanism for accessing the local bus.

8.4 Maximum-Mode Interface

- **Queue status signals**
 - The 2-bit queue status code QS0 and QS1 tells the external circuitry what type of information was removed form the queue during the previous clock cycle.

<table>
<thead>
<tr>
<th>QS1</th>
<th>QS0</th>
<th>Queue Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (low)</td>
<td>0</td>
<td>No Operation. During the last clock cycle, nothing was taken from the queue.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>First byte. The byte taken from the queue was the first byte of the instruction.</td>
</tr>
<tr>
<td>1 (high)</td>
<td>0</td>
<td>Queue Empty. The queue has been reinitialized as a result of the execution of a transfer of instruction.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Subsequent Byte. The byte taken from the queue was a subsequent byte of the instruction.</td>
</tr>
</tbody>
</table>

Queue status code

8.5 Electrical Characteristics

- Power is applied between pin 40 (Vcc) and pins 1 (GND) and 20 (GND).
- The nominal value of Vcc is specified as +5V dc with a tolerance of ±10%.
- Both 8088 and 8086 draw a maximum of 340mA from the supply.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vcc</td>
<td>Input low voltage</td>
<td>-0.3 V</td>
<td>+0.3 V</td>
</tr>
<tr>
<td>Vcc</td>
<td>Input high voltage</td>
<td>+2.0 V</td>
<td>+5.0 V</td>
</tr>
<tr>
<td>Vcc</td>
<td>Output low voltage</td>
<td>0.65 V</td>
<td>+2.0 mA</td>
</tr>
<tr>
<td>Vcc</td>
<td>Output high voltage</td>
<td>+2.4 V</td>
<td>IL=400 μA</td>
</tr>
</tbody>
</table>

I/O voltage levels
8.6 System Clock

- The time base for synchronization of the internal and external operations of the microprocessor in a microcomputer system is provided by the clock (CLK) input signal.
- The standard 8088 operates at 5 MHz and the 8088-2 operates at 8 MHz.
- The 8086 is manufactured in three speeds: 5-MHz 8086, 8-MHz 8086-2, and the 10-MHz 8086-1.
- The CLK is externally generated by the 8284 clock generator and driver IC.

8.6 System Clock

- Block diagram of the 8284 clock generator

8.6 System Clock

- CLK waveform
 - The signal is specified at Metal Oxide Semiconductor (MOS)-compatible voltage level.
 - The period of the 5-MHz 8088 can range from 200 ns to 500 ns, and the maximum rise and fall times of its edges equal 10 ns.

8.6 System Clock

- PCLK and OSC signals
 - The peripheral clock (PCLK) and oscillator clock (OSC) signals are provided to drive peripheral ICs.
 - The clock output at PCLK is half the frequency of CLK. The OSC output is at the crystal frequency which is three times of CLK.
8.6 System Clock

EXAMPLE

If the CLK input of an 8086 MPU is to be driven by a 9-MHz signal, what speed version of the 8086 must be used and what frequency crystal must be attached to the 8284

Solution:
The 8086-1 is the version of the 8086 that can be run at 9-MHz.

To create the 9-MHz clock, a 27-MHz crystal must be used on the 8284.

8.7 Bus Cycle and Time States

- A bus cycle defines the basic operation that a microprocessor performs to communicate with external devices.
- Examples of bus cycles are the memory read, memory write, input/output read, and input/output write.
- The bus cycle of the 8088 and 8086 microprocessors consists of at least four clock periods.
- If no bus cycles are required, the microprocessor performs what are known as *idle states*.
- When READY is held at the 0 level, *wait states* are inserted between states T1 and T4 of the bus cycle.

EXAMPLE

What is the duration of the bus cycle in the 8088-based microcomputer if the clock is 8 MHz and the two wait states are inserted.

Solution:
The duration of the bus cycle in an 8 MHz system is given by $t_{\text{cy}} = 500 \text{ ns} + N \times 125 \text{ ns}$

In this expression the N stands for the number of wait states. For a bus cycle with two wait states, we get

$t_{\text{cy}} = 500 \text{ ns} + 2 \times 125 \text{ ns} = 500 \text{ ns} + 250 \text{ ns}$

$= 750 \text{ ns}$

8.8 Hardware Organization of the Memory Address Space

1Mx8 memory bank of the 8088

High and low memory banks of the 8086
8.8 Hardware Organization of the Memory Address Space

First bus cycle

Second bus cycle

Even address byte transfer by the 8086

Odd address byte transfer by the 8086

Even address word transfer by the 8086

Odd-address word transfer by the 8086
8.8 Hardware Organization of the Memory Address Space

EXAMPLE
Is the word at memory address 0123116 of an 8086-based microcomputer aligned or misaligned? How many cycle are required to read it from memory?
Solution:
The first byte of the word is the second byte at the aligned-word address 0123016. Therefore, the word is misaligned and required two bus cycles to be read from memory.

8.9 Address Bus Status Codes
Whenever a memory bus cycle is in progress, an address bus status code S4S3 is output by the processor.
- S4S3 identifies which one of the four segment register is used to generate the physical address in the current bus cycle:
 - S4S3=00 identifies the extra segment register (ES)
 - S4S3=01 identifies the stack segment register (SS)
 - S4S3=10 identifies the code segment register (CS)
 - S4S3=11 identifies the data segment register (DS)
- The memory address reach of the microprocessor can thus be expanded to 4 Mbytes.

8.10 Memory Control Signals

Minimum-mode memory control signals

- ALE – Address Latch Enable – used to latch the address in external memory.
- IO/M – Input-Output/Memory – signal external circuitry whether a memory or I/O bus cycle is in progress.
- DT/R – Data Transmit/Receive – signal external circuitry whether the 8088 is transmitting or receiving data over the bus.
- RD – Read – identifies that a read bus cycle is in progress.
- WR – Write – identifies that a write bus cycle is in progress.
- DEN – Data Enable – used to enable the data bus.
- SS– Status Line – identifies whether a code or data access is in progress.

The control signals for the 8086’s minimum-mode memory interface differs in three ways:
- IO/M signal is replaced by M/IO signal.
- The signal SS– is removed from the interface.
- BHE (bank high enable) is added to the interface and is used to select input for the high bank of memory in the 8086’s memory subsystem.

Maximum-mode memory control signals

- BHE (bank high enable) is added to the interface.
- SS– (status line) is removed from the interface.
- M/IO signal is replaced by IO/M signal.

Maximum-mode 8088 memory interface
8.10 Memory Control Signals

- Maximum-mode memory control signals
 - MRDC – Memory Read Command
 - MWTC – Memory Write Command
 - AMWC – Advanced Memory Write Command

<table>
<thead>
<tr>
<th>Status Inputs</th>
<th>CPU Cycle</th>
<th>8288 Command</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Read I/O Port</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Write I/O Port</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Halt</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Instruction Fetch</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Read Memory</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Write Memory</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Passive</td>
</tr>
</tbody>
</table>

8.11 Read and Write Bus Cycle

- Read cycle
 - Minimum-mode memory read bus cycle of the 8088
 - Maximum-mode memory read bus cycle of the 8086

- Write cycle
 - Minimum-mode memory write bus cycle of the 8088
 - Maximum-mode memory write bus cycle of the 8086
8.12 Memory Interface Circuit

- Address bus latches and buffers
- Bank write and bank read control logic
- Data bus transceivers/buffers
- Address decoders

Operation of the 74F373

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>Enable C</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>H</td>
<td>X</td>
</tr>
</tbody>
</table>

Block diagram of a D-type latch

Circuit diagram of the 74F373

A review of flip-flop/latch logic

Cross-NOR S-R flip-flop

Cross-NAND S-R flip-flop

Cross-NOR S-R flip-flop

RESET

SET
8.12 Memory Interface Circuit

A review of flip-flop/latch logic

The D latch is used to capture, or ‘latch’ the logic level which is present on the data line when the clock input is high.

D-type latch

Positive edge-triggered JK flip-flop

Address bus latches and buffers

Bank write and bank read control logic
8.12 Memory Interface Circuit

- Data bus transceivers

Block diagram and circuit diagram of the 74F245 octal bus transceiver

8.12 Memory Interface Circuit

- Data bus transceivers

Data bus transceiver circuit

8.12 Memory Interface Circuit

- Address decoder

Address bus configuration with address decoding

8.12 Memory Interface Circuit

- Address decoder

Block diagram and operation of the 74F139 decoder

8.12 Memory Interface Circuit

- Address decoder

Circuit diagram of the 74F139 decoder

8.12 Memory Interface Circuit

- Address decoder

Address decoder circuit using 74F139
8.12 Memory Interface Circuit

Address decoder

Block diagram and operation of the 74F138 decoder

8.13 Programmable Logic Arrays

Programmable logic array, PLA, are general-purpose logic devices that have the ability to perform a wide variety of specialized logic functions.

A PLA contains a general-purpose AND-OR-NOT array of logic gate circuits.

The process used to connect or disconnect inputs of the AND gate array is known as programming, which leads to the name programmable logic array.

Major types of programmable logic architecture

- Simple Programmable Logic Devices (SPLDs)
 - PAL, GAL, PLA, EPLD
- Complex Programmable Logic Devices (CPLDs)
 - EPLD, PEEL, EEPLD, MAX
- Field Programmable Gate Arrays (FPGAs)
 - LCA, pASIC, FLEX, APEX, ORCA, Virtex, pASIC
- Field Programmable InterConnect (FPICs)

PLAs, GALs, and EPLDs

- Early PLA devices were all manufactured with the bipolar semiconductor process.
- Bipolar devices are programmed with an interconnect pattern by burning out fuse links within the device.
- PLAs made with bipolar technology are characterized by slower operating speeds and higher power consumption.
- Two kinds of newer PLA, manufactured with the CMOS process, are in wide use today: the GAL and EPLD.
8.13 Programmable Logic Arrays

- **Block diagram of a PLA**
 - The logic levels applied at inputs I_0 through I_{15} and the programming of the AND array determine what logic levels are produced at outputs F_0 through F_{15}.
 - The capacity of a PLA is measured by three properties: the number of inputs, the number of outputs, and the number of product terms (P-terms).

- **Architecture of a PLA**
 - A typical PLA architecture.
 - PLA with output latch.

- **Standard PAL device**
 - A PAL, programmable array logic, is a PLA in which the OR array is fixed; only the AND array is programmable.
 - The 16L8 is a widely used PAL IC. It is housed in a 20-pin package. It has 10 dedicated input, 2 dedicated outputs, and 6 programmable I/O lines.
 - The 16L8 is manufactured with bipolar technology.
 - It operates from a +5V ±10% dc power supply and draws a maximum of 180mA.
 - The 20L8 has 20 inputs, 8 outputs and 64 P-terms.
 - The 20R8 is the register output version of 20L8.
8.13 Programmable Logic Arrays

- Standard PAL™ device

16R8 circuit diagram and pin layout

8.13 Programmable Logic Arrays

- Expanding PLA capacity

Expanding output word length
Expanding input word length

8.14 Types of Input/Output

- Isolated input/output

- Memory-mapped input/output

Memory-mapped input/output

In the case of memory-mapped I/O, MPU looks at the I/O port as though it is a storage location in memory.

- Instructions that affect data in memory are used instead of the special I/O instructions.

- The memory instructions tend to execute slower than those specifically designed for isolated I/O.
8.14 Types of Input/Output

- Memory-mapped input/output

- Isolated I/O ports

8.15 Isolated Input/Output Interface

- I/O devices:
 - Keyboard
 - Printer
 - Mouse
 - 82C55A, etc.

- Functions of interface circuit:
 - Select the I/O port
 - Latch output data
 - Sample input data
 - Synchronize data transfer
 - Translate between TTL voltage levels and those required to operate the I/O devices.

8.15 Isolated Input/Output Interface

- Minimum-mode interface
 - Minimum-mode 8088 system I/O interface

8.15 Isolated Input/Output Interface

- Maximum-mode interface
 - Maximum-mode 8088 system I/O interface
8.15 Isolated Input/Output Interface

- Maximum-mode interface

![Maximum-mode 8086 system I/O interface](image)

8.15 Isolated Input/Output Interface

- Maximum-mode interface

<table>
<thead>
<tr>
<th>Status Inputs</th>
<th>CPU Cycle</th>
<th>8288 Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SC, SC, SC, SC]</td>
<td>Interrupt Acknowledge</td>
<td>INTR</td>
</tr>
<tr>
<td>[SC, SC, SC, SC]</td>
<td>Read I/O Port</td>
<td>INRD</td>
</tr>
<tr>
<td>[SC, SC, SC, SC]</td>
<td>Write I/O Port</td>
<td>INWR</td>
</tr>
<tr>
<td>[SC, SC, SC, SC]</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>[SC, SC, SC, SC]</td>
<td>Instruction Fetch</td>
<td>IORC</td>
</tr>
<tr>
<td>[SC, SC, SC, SC]</td>
<td>Read Memory</td>
<td>IOWC</td>
</tr>
<tr>
<td>[SC, SC, SC, SC]</td>
<td>Write Memory</td>
<td>AIOWC</td>
</tr>
</tbody>
</table>

I/O bus cycle status codes

8.16 Input/Output Data Transfers

- Input/output data transfers in the 8088 and 8086 microcomputers can be either byte-wide or word-wide.
- I/O addresses are 16 bits in length and are output by the 8088 to the I/O interface over bus lines AD0 through AD7 and A8 through A15.
- In 8088, the word transfers is performed as two consecutive byte-wide data transfer and takes two bus cycle.
- In 8086, the word transfers can takes either one or two bus cycle.
- Word-wide I/O ports should be aligned at even-address boundaries.

8.17 Input/Output Instructions

- **OUT**

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Meaning</th>
<th>Format</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>Input direct</td>
<td>IN Acc, Port</td>
<td>(Acc) (\rightarrow) Port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acc = AL or AX</td>
</tr>
<tr>
<td>OUT</td>
<td>Output indirect (variable)</td>
<td>IN Acc, DX</td>
<td>(Acc) (\rightarrow) (DX)</td>
</tr>
<tr>
<td></td>
<td>Output direct</td>
<td>OUT Port, Acc</td>
<td>(Port) (\rightarrow) (Acc)</td>
</tr>
<tr>
<td></td>
<td>Output indirect (variable)</td>
<td>OUT DX, Acc</td>
<td>(DX) (\rightarrow)-(Acc)</td>
</tr>
</tbody>
</table>

EXAMPLE

Write a sequence of instructions that will output the data FF16 to a byte-wide output port at address AB16 of the I/O address space.

Solution:

First, the AL register is loaded with FF16 as an immediate operand in the instruction

```
MOV AL, 0FFH
```

Now the data in AL can be output to the byte-wide output port with the instruction

```
OUT 0ABH, AL
```
8.17 Input/Output Instructions

EXAMPLE

Data are to be read in from two byte-wide input ports at addresses A000_{16} and A9_{16}, and then output as a word-wide output port at address B000_{16}. Write a sequence of instructions to perform this input/output operation.

Solution:

First read in the byte at address A000_{16} into AL and move it into AH.

\[\text{IN AL, 0A0AH} \]

\[\text{MOV AH, AL} \]

Now the other byte can be read into AL by the instruction

\[\text{IN AL, 09AH} \]

And to write out the word of data

\[\text{MOV DX, 0B000H} \]

\[\text{OUT DX, AX} \]

8.18 Input/Output Bus Cycle

Input bus cycle of the 8088

Output bus cycle of the 8086